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Conformal structure of 4,' and asymptotic symmetry I. 
Definitions and local theory 

J Foster 
School of Mathematical and Physical Sciences, University of Sussex, Falmer, Brighton, 
BN19QH. UK 

Received 21 July 1977 

Abstract. The intuitive definition of asymptotic symmetry is compared with more formal 
definitions due to Tamburino and Winicour, and to Penrose, and within the context of the 
approach of Newman and Unti to asymptotically flat empty space-times these are shown 
to be equivalent. Natural interpretations of the transformations inherent in the work of 
Newman and Unti are given in terms of the conformal approach of Penrose. 

1. Introduction 

The concept of asymptotic symmetry first appeared.in the work of Bondi er a1 (1962) 
and its generalisation to the non-axisymmetric case by Sachs (1962), where the BMS 
(Bondi-Metzner-Sachs) group appeared as a group of coordinate transformations 
which left invariant the asymptotic form of the metric tensor representing gravita- 
tional radiation from isolated sources in an asymptotically flat space-time. Newman 
and Unti (1962) also considered such radiation, but their definition of asymptotic 
flatness was less restrictive than that of Bondi and Sachs, this being due to the different 
approach. 

Bondi and Sachs start with a form for the metric tensor and impose certain 
conditions on it to ensure flatness as a luminosity distance r tends to infinity. Among 
these conditions is one which ensures that in the limit the two-surfaces of constant r, in 
the null hypersurfaces around which their coordinate system is built, are spheres. 
Newman and Unti, on the other hand, express their condition for asymptotic flatness 
in terms of qo, one of the tetrad components of the Riemann tensor in the spin- 
coefficient formalism, and the asymptotic two-surfaces are not required to be spheri- 
cal. Their specification is, in fact, part of the data for the initial-value problem. In the 
language of Penrose (1963, 1964, 1965), Bondi and Sachs require .%+ to be 
homeomorphic to R X S2, but Newman and Unti admit more generality in the struc- 
ture of 3'. 

It is of course arguable that 9' should be homeomorphic to R x S2 for the case of 
radiation from isolated sources (see Penrose 1965 and the proposed sequel to the 
present paper (to appear)) and in later papers Newman and his co-workers (e.g. Janis 
and Newman 1965, Newman and Penrose 1968) take it to be so. However, the 
original approach of Newman and Unti allows one to consider the question of 
asymptotic symmetry in cases of different global structures for 3+, and to see how its 
structure affects the asymptotic symmetry group. This question was effectively raised 
in the closing remarks of the discussion in the original paper of Newman and Unti 
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(1962), and the proposed sequel will attempt to furnish the answer. The present paper 
contains some necessary preliminaries, and is largely concerned with clarifying the 
concept of an asymptotic symmetry transformation, and interpreting such trans- 
formations, and others introduced by Newman and Unti, in the conformal language of 
Penrose. 

The definition of an asymptotic symmetry transformation used by Bondi and Sachs 
and by Newman and Unti was intuitive, being simply a coordinate transformation 
which preserves the asymptotic form of the metric tensor. Tamburino and Winicour 
(1966) have given a more formal definition, and Penrose (1963, 1964) has suggested a 
third; these last two are based on the conformal techniques of Penrose. The main 
purpose of this paper is to show that for the space-times admitted by the Newman- 
Unti condition for asymptotic flatness, these definitions are essentially equivalent, and 
to interpret the more general transformations of Newman and Unti in conformal 
geometric terms. It is therefore necessary to review that part of the work of Newman 
and Unti which has a bearing on asymptotic symmetry, and to translate it into the 
conformal language of Penrose. 

The notation used is that of Newman and Unti, with the exception that Greek 
suffixes take the values 0, 1 ,2 ,  3, lower case Latin suffixes the values 2, 3, and capitals 
the values 0, 2, 3. 

2. Conformal aspects of the transformations of Newman and Unti 

Newman and Unti use a coordinate and null tetrad system built around a family of null 
hypersurfaces: the coordinate u = xo labels these hypersurfaces, r = x1 is an affine 
parameter along the null geodesics lying in the hypersurfaces, and the remaining 
coordinates xi, i = 2 , 3 ,  serve to pick out these geodesics within each hypersurface. 
The hypersurfaces are required to be neither asymptotically plane nor cylindrical; this 
condition may be expressed in terms of the divergence, whose negative in the spin- 
coefficient formalism is p, and the complex shear U of the null geodesics within the 
hypersurfaces: 

as r+oO, p # O # u ,  p2  #U@. 

The condition of Newman and Unti for asymptotic flatness may be expressed as a 
condition on the tetrad component WO of the Weyl tensor, 

q0 = w E ~ P  + O(r-6), (2.1) 
together with a condition which they call asymptotic smoothness, which governs the 
behaviour of WO under differentiation. Using this condition, and exploiting the spin- 
coefficient formalism, they are able to obtain an asymptotic solution of the empty- 
space field equations. From their expression for the asymptotic form of the 
components g K U  of the metric tensor may be obtained the line element 
ds 2 = - ( ~ - ~ r + a 0 + u ~ r - ’ + O ( r - ~ ) ) d u ~ + 2  du dr+P-2(Siib; +O(r-’))du dx’ 

-tP-2(r2Sij +$P-’ d!’SkiSijr + a o ~ o S i j  + O(r-’)) dx’ dx’, (2.2) 
where 

= 2(ln P),o, ao= - 2p2vT In P, a1= -(@+@), 
b;  = - ( ~ o i ( $ J + p w ” ,  dy = 2(~050i,pJ + uOpipi), 
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and here 

602 = - $33 = P(u, X I ) ,  

v = a/ax2 + i a/ax3, 

WO = PbaO - 2u00P, 

f,o = afiau. 

(A superscript zero indicates independence of r. The meaning of the order symbol is 
that of Newman and Unti (1962); included in it are terms which may often be 
calculated, but series expansions are taken only as far as is necessary for the present 
discussion.) 

Apart from @, which is the leading coefficient in the expansion of the tetrad 
component P2 of the Weyl tensor in inverse powers of r, the only quantities involved 
in this asymptotic form of the line element are U’ the leading coefficient in the 
expansion of the complex shear, and the function P(u, xi), together with their deriva- 
tives. (Here the function P ( u , x i )  is taken to be real-valued, whereas at this stage 
Newman and Unti have it complex-valued. It may be made real-valued by exploiting 
a still available tetrad transformation; Newman and Unti postpone this transformation 
until after considering the coordinate transformation induced by the introduction of a 
new family of hypersurfaces. It is more convenient to interchange these steps, so 
P(u, x i )  is taken to be real-valued at this stage.) 

The quantities (@+@), uo and P ( u , x ; )  constitute part of the data for the 
initial-value problem. From the line element (2.2) it may be seen that the datum 
P(u, x i )  effectively describes the geometry of the asymptotic two-surface which is the 
limit as r -* 00 of the two-surface U, r = constant. In some respects P(u, xi) is the most 
significant datum, since from a global point of view its prescription demands a 
consideration of the topological structure of the asymptotic two-surfaces, and these 
constitute the domain of the remaining initial data. This point will be taken up in the 
sequel to this paper. 

In obtaining the asymptotic solution above, Newman and Unti make use of a 
number of tetrad and coordinate transformations to simplify the working, and a 
number of coordinate conditions are introduced; none of these changes the original 
family of null hypersurfaees. One of the more significant coordinate conditions is that 
of requiring that the coordinates xi, regarded as coordinates on the two-surfaces 
U, r =constant, be asymptotically isothermal; this is the origin of the function P. 

They then go on to consider the effect of introducing a new coordinate system 
based on a new family of hypersurfaces U’ = constant, in which the same coordinate 
conditions hold, and calculate the transformation from the old to the new Coordinate 
system. The infinitesimal version of this, x &  + x w  + l ” ( x ” ) ,  is given by 

lo = lO0(u, xi), 
51 = - l o o  

ti = l0’(x’)+o(r-’), 

to2,2 = to3,3, to*,3= - t03,2. (2.4) 

.0r+0(1), (2.3) 

where 

The restrictions on L O i  reflect the asymptotically isothermal requirement. The 
function P transforms according to 

P’(u + lo, x i  + 5’ )  = (1 - +Sf- f i )P(U,  x i ) .  (2.5) 
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This then is the transformation which in a general way preserves the asymptotic 
form of the line element (2.2). Its finite form is 

U'= ~ ~ ( u , x ~ ) + O ( r - ' ) ,  

r ' = R l ( u ,  xi )+O( l ) ,  (2.6) 

X" = Y;; (Xi )+O(P) ,  

where RI = (Vo,o)-l, and (for transformations which are continuously derived from the 
identity) 

y g . 3  = - Yi.2. (2.7) 

(2.8) 

3 
y:,2 = y0 .3 ,  

In the finite form P transforms according to 

P'(V0, Yo")= (VoJ'(det (Y6,j))''zP(u, xi). 

For the remainder of this paper such a transformation will be referred to as an NU 

transformation. Newman and Unti make use of it to rid P of its u-dependence. The 
significance of this from the conformal point of view is given at the end of this section. 

Asymptotic two-surfaces have been mentioned above, although a rigorous 
definition of such objects was not given. An effective way of dealing with them is to 
use the conformal techniques of Penrose, and to realise them as slices of the null 
hypersurface 9+ which represents future null infinity. The limit as r + o ; )  of the 
transformation (2.6) is in fact a conformal mapping of 4+ onto itself, and may be 
interpreted as a mapping between two families of asymptotic two-surfaces in which 
each member of one family is mapped onto a member of the other, as will now be 
shown. 

The technique developed by Penrose (1964, 1965) (see also Walker 1972) for the 
discussion of asymptotic properties of space-time is by now well known, and famili- 
arity with the basic ideas will be assumed. The space-times discussed in detail by 
Penrose have the property of asymptotic simplicity, a property which comprises a 
number of regularity conditions and a condition of a topological nature. This last 
requires that every null geodesic in the unphysical space-time At contains, if maxi- 
mally extended, two distinct points on the boundary $, and Penrose (1965) has shown 
that in the cases where 9 is null this implies that the two subsets 4' and 9- of 91 are 
both homeomorphic to R X S2. In this paper the last requirement is dropped, so as to 
admit the wider class of space-times which the approach of Newman and Unti allows. 

These space-times satisfy the empty-space field equations with zero cosmological 
constant, so 9, is null. The parameter r is an affine parameter along null geodesics and 
it is assumed that r increases into the future, so that $+ is reached as r + ci). If r is 
replaced by a new coordinate 1 = l/r, then the unphysical space-time At with line 
element ds2 may be obtained from the physical space-time &with line element df2  by 
a conformal transformation ds2 = 1' ds'2, and 91+ is given by 1 = 0. The line element of 
Jcc is then 
ds 2 = - ( ~ - i l + a o 1 * + ~ ~ 1 ~ + 0 ( 1 ~ ) ) d u ~ - 2  du dl+P-z(Sijb:12+0(13))d~ dx' 

-$P-*(&j +$P-2  d$'6ki&j/ +a06012&, + 0(13)) dx' dx'. (2.9) 
Asymptotic two-surfaces are then the slices of 9+ given by U =constant. On 

(2.10) 

putting 1 = 0 and U = constant in the line element (2.9) one gets 
k -2 dsg = $(P(u, x )) Sij dx' dx' 
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as the line element of the two-surface U = constant, and x i  are isothermal coordinates 
for each such two-surface. This is also the line element of 9’, since dropping the 
condition U = constant and simply putting Z = 0 in the expression (2.9) yields (2.10). 

The stage has now been reached where it is possible to give a more natural 
formulation of an NU transformation (in its infinitesimal form (2.3)). Replacing x 1  = r 
by the new coordinate x 1  = Z = l / r ,  it takes the form x”  + x ”  + f ” ( x ” )  where 

f 0  = fO0(u, x i ) ,  f 1  = l 0 O , 0 l  +0(Z2), f ’  = lo’ ( x ’ )  + O(Z), (2.11) 

and f o i  satisfy equation (2.4). The second of the equations in (2.11) shows that 4’ is 
left invariant by this transformation (i.e. 1 = O e l ‘ = O ) ,  and it therefore may be 
regarded as a mapping of .9+ onto itself, whose infinitesimal generators are given by 
(on dropping the superscript zero) 

, . .  
to = lo&, x i > ,  

f 2 , 2  = f .3, 

l‘ = f’(x’), 
where 

3 3 
f 2 , 3 =  -5  ,2. 

(2.12) 

(2.13) 

No information is in fact lost by adopting this point of view because the terms included 
in the order symbols in the relations (2.3) are determined by loo and f o i  (see Newman 
and Unti 1962). 

Infinitesimal generators of the form (2.12) satisfying (2.13) are in fact precisely the 
generators of conformal transformations of 9+ onto itself. That is, they are the 
solutions of 

(2.14) gAB,CSC+gDBfD,A+gADf D ,B-AgAB =o, 
(A,  B, C, D = 0,2 ,3) .  For on taking 

[gAB]=[: *F2 0 +j-l? 
the equations (2.14) become 

3 
f 2 , 0  = f ,o = 0, 

A = 2f2,2- 2P-‘P,AlA = 2 f 3 - 3 -  2P-’P,AfA, 

1 3 , 2  -k f 2 , 3  = 0, 

from which may readily be deduced the form (2.12) of the generators and the 
conditions (2.13) on their derivatives, together with the expression 

A = g i  -2P-’P,,fA (2.15) 
for A. 

Thus an NU transformation has a natural interpretation as a conformal trans- 
formation of $’ onto itself. It does, however, require a different point of view. The 
transformation as derived by Newman and Unti is a coordinate transformation; in the 
interpretation now given to it, it is a point transformation of 9’ into itself. The finite 
version takes the form 

U ’ =  V ( u ,  X I ) ,  

Y 2 , 2  = y ,31 

X” = Y ” ( X i ) ,  

where 
Y ’ , ~ =  - Y ~ , ~ .  

3 

(2.16) 

(2.17) 
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These equations are just the same as the limit of equations (2.6), but the inter- 
pretation now is that the point on 9' with coordinates (U, x i )  is mapped into the point 
with coordinates ( V ( u ,  xi), Y"(xi)) .  (The difference in the positions of the primes on 
the coordinates X "  in equations (2.6) and (2.16) is one of the niceties of the kernel- 
index notation which enables one to distinguish a point from a coordinate trans- 
formation.) 

The distance between two neighbouring points with coordinates (U, x i )  and (U + 
du, x i  + dx ') is given by 

(2.18) ds i  =f(P(u ,  X ~ ) ) - ~ S L ~  dx' dx', 

and these get mapped into two neighbouring points whose distance apart is given by 

dsb2 = t ( P ( V ( u ,  x k ) ,  Y"(xk)))-' det(Y",,(xk))Sij dx' dx', (2.19) 

so the mapping is indeed conformal. 
If the two points lie on the same two-surface u =constant = uo, say, then du = 0, 

the relations (2.18) and (2.19) are unchanged, and one sees that the two-surface 
u = uo is mapped conformally onto the two-surface given by u = V(uo, x i ) .  In this way 
a conformal transformation of 9' induces conformal transformations between 
members of families of asymptotic two-surfaces. 

Finally, one other aspect of the work of Newman and Unti has a conformal 
interpretation. Because 9+ is null it contains null geodesics or generators (a con- 
formally invariant concept); they are given by x i  = constant and u is a parameter along 
them. If one calculates their divergence (using Christoffel symbols of A and then 
going to 9+), one finds that it is (lnP),o; on the other hand their shear is zero. The 
vanishing of the shear is a conformally invariant property, but the vanishing or 
non-vanishing of the divergence is not. Thus in making use of an NU transformation to 
rid P of its u-dependence, Newman and Unti are effectively introducing a new 
conformal factor l ' =  l / r '  relating the physical space-time to an unphysical one in 
which the generators of 9' are non-diverging. 

3. Asymptotic symmetry 

Penrose (1964) has pointed out that by using his conformal technique it is possible to 
discuss asymptotic symmetries. Any motion which takes the physical space-time <k 
into itself produces a conformal motion of the unphysical space-time At which induces 
a conformal motion of 9'. Even if A does not have exact symmetries, conformal 
motions of 9' may persist, and this provides a tentative definition of an asymptotic 
symmetry transformation. When viewed as a mapping of 9+ onto itself an NU 
transformation is an asymptotic symmetry transformation according to this definition. 

However, under such an infinitesimal transformation, the function P(u, x i )  trans- 
forms according to equation (2.8), and its exact form is not preserved, nor is the 
asymptotic form of the line element (2.2). The transformation therefore lacks the 
essential property which one intuitively feels is the correct defining property for an 
asymptotic symmetry transformation. 

'The reason that this definition is unsatisfactory for the space-times considered 
here is that 9' is null; its singular metric endows it with insufficient structure. In order 
to get a satisfactory conformal definition one needs a way of restricting the conformal 
transformations of 9' to those whose generators are the limits of generators of 
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coordinate transformations preserving P. This requires l” to satisfy 

f O . 0  - t f i , i  + P-’(P,ofO + P,if’) = 0. (3.1) 

This follows from equation (2.5) by imposing the condition P’(u, x i ) =  P(u, xi) and 
expanding its left-hand side in a Taylor series up to first-order quantities. 

The definition of an asymptotic symmetry transformation given by Tamburino and 
Winicour (1966) effectively does this, and the following is an outline of their 
argument. 

has exact symmetries, then there exists a Killing 
vector field f” satisfying 

If the physical space-time 

i ” U , P f P  + $X”,” + i ” P f P , Y  = 0, 

g w w  + gPX’,, + g , , f P , u  - 2fin-’%tPg,u = 0,  

(3.2) 

which may be written in terms of the unphysical metric tensor g,, = a2&, as 

(3.3) 

and in particular this equation holds at 9’. (Hence s2JP  = 0 at $+, indicating that f”  
is tangent to $’.) Even if .k does not have exact symmetries there may exist quantities 
f” satisfying equation (3.3) at $+, and in this way an asymptotic Killing vector field 
may be defined. 

As remarked above, an asymptotic Killing vector is tangent to 9’, so under the 
transformation of A4 generated by it 9’ is mapped onto itself. Thus one can give a 
precise definition of an asymptotic symmetry transformation as a mapping of 9+ onto 
itself generated by an asymptotic Killing vector field. This essentially is the definition 
given by Tamburino and Winicour. 

For the space-times under consideration SZ = 1 = xl, and the indeterminate factor 
n-’n,,f” may be evaluated by l’H6pital’s rule. The equation to be satisfied becomes 

[ B ” Y , P f P  +g,dP,, + g ” P f P , y  - 2f1,1gwuI,+ = 0. (3.4) 
Since f ‘  = 0 at 9ii, this last equation yields the following information valid at $+: 

1 
fO ,o  = 5 , 1 ,  

f ’ ,o=  -2P s f , j ,  
2 i j  1 

(3 .5a)  

(3.5b) 

( 3 . 5 )  

lo,’ = 0, (3.5d) 

(3.5e) 2 i j  0 f1,1=-2P 6 f , j ,  

P-1(P,0f0+P, i f i ) - f2 ,2+f1 .1  = 0, (3.5f)  

p - l (p ,o fo t  ~ , ~ f ~ ) - f ~ , ~ + f ~ , ~  = o ,  (3.5g) 
P . 2  + f 2 , 3  = 0. (3.5h) 

Equation (3.5d) implies that f o  = fo0(u, x i ) +  0 ( l 2 ) ;  equation (3.5b) then implies 
that f ’  = ~ooo,01+O(12) off $’, and ( 3 . 5 ~ )  is satisfied. Thus l*,j = 0 on $’, and (3.5~) 
implies f i , o = O  on 9’. Equation (3.5e) then implies that f i =  
f0 i (x i ) -2P26 i~f00 , j l+0(Z2)  off 9+. So the mapping of 9’ onto itself is given by 
generators whose components have the form (on dropping the superscript zero) 

. . .  
f 0  = l 0 ( U ,  x i ) ,  f ’  = f ’ ( x ’ ) .  
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The remaining equations (3.5f, g, h )  yield relations between their derivatives. Equa- 
tion (3.5h) and the difference of the equations (3.5f) and (3.5g) reproduce the 
relations (2.13). So the transformation generated is a conformal transformation of 9' 
onto itself. However, it is not a general one, for there still remains the sum of 
equations (3 .5 f )  and (3.5g), which reduces to equation (3.1), and in this way the 
conformal transformations of 9' are restricted as required. 

Penrose (1964) has indicated an alternative and more geometric way of restricting 
the conformal transformations of 9' in order to obtain a more sensible definition of an 
asymptotic symmetry transformation. A conformal transformation induces a mapping 
of the tangent space at a point onto the tangent space at the image of that point in 
which angles are preserved. Because 9' is null there exist zero angles between 
non-proportional vectors; these occur when the two vectors are coplanar with the 
tangent to a generator of 9'. Penrose calls these null angles. Although two null 
angles are both numerically zero, it nevertheless makes sense to say that one is larger 
than the other if it includes the other as a part, and Penrose has shown that one may 
use this fact to introduce a concept of inequality between null angles. The conformal 
geometry of 4+ may then be strengthened by requiring conformal transformations to 
preserve null angles also. This in fact provides the necessary restriction on conformal 
transformations to make them asymptotic symmetry transformations, as the following 
shows. 

Penrose's procedure for comparing null angles is quite sophisticated, and may be 
replaced in the present context by a procedure which allows one actually to measure 
the size of a null angle. 

Consider then the null angle formed by a pair of tangents to 9+ which are coplanar 
with the tangent vector to a generator of 9' at a point 0 with coordinates (U, xi). If 
one identifies a small region of the tangent space at 0 with a small region of 9' about 
0, then the two vectors intersect a neighbouring generator in the points P1 and P2 with 
coordinates (u1, x i  +dx')  and (u2, x i  +dx')  respectively, say. (See figure 1.) 

Figure 1. 

Let d be given by 

OP: = OP: = d 2  = i (P(u,  
and define the size of the null angle LP10P2 to be 

dx' dx', 

e = lim Iul- u21/d. 
dx'+O 

This definition is in fact conformally invariant in the sense that if one makes an NU 
transformation and uses the corresponding new conformal factor SZ' = 1' = l / r '  to 
obtain the unphysical space-time, then the size of the null angle is not changed. 
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Under an infinitesimal conformal transformation of 9+ given by x A  + x A  + f A  

(A = 0,2 ,3) ,  the quantities (ul - u2)  and d transform according to 

U1 - U*' u1- uz+ f?  - f $ ,  

d + [ l  - (P(u,  ~'))- ' (P,ofO+P,if ' )+4f' , i ]d .  

The transformation for d is a consequence of equation (2.18) and the infinitesimal 
form of equation (2.19). 

Hence the null angle is mapped into one whose size is 

So null angles are preserved if and only if equation (3.1) is satisfied, and it is seen that 
asymptotic symmetry transformations are precisely those conformal transformations 
which preserve null angles. 

4. Conclusions 

As has been demonstrated above, the definitions of asymptotic symmetry trans- 
formations proposed by Tamburino and Winicour and by Penrose are equivalent, and 
agree with the intuitive definition, at least as far as the class of space-times admitted by 
the approach of Newman and Unti to asymptotically flat space-times are concerned. 
The NU transformations preserving the asymptotic form of the metric tensor in a 
general way are just the conformal transformations of 9' onto itself, while those 
which preserve the asymptotic form exactly are conformal transformations of 9+ 
which in addition preserve null angles. 

It has also been shown that the use of an NU transformation by Newman and Unti 
to rid the function P ( u , x ' )  of its u-dependence may be interpreted as choosing a 
conformal factor which yields a form for 4+ with its generators non-diverging. 

As far as practical calculations of asymptotic symmetry transformations are 
concerned, the definition of Tamburino and Winicour is the easiest with which to 
work. Their definition was used in the author's calculation of the asymptotic symmetry 
groups of the Ds-spaces of Robinson and Trautman (see Foster 1969). 

No attention has been paid in the present paper to the question of the existence of 
(non-trivial) asymptotic symmetry transformations, nor to the relevance that the 
global structure of 9+ has to this question. These matters will be considered in the 
proposed sequel to the present paper. 
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